Abstract
Iron porphyrins are potential catalysts for the electrocatalytic and photocatalytic reduction of CO2. It has been recently established that the reduction of CO2 by an iron porphyrin complex with a hydrogen bonding distal pocket involves at least two intermediates: a Fe(ii)-CO22- and a Fe(ii)-COOH species. A distal hydrogen bonding interaction was found to be key in determining the stability of these intermediates and affecting both the selectivity and rate of CO2 reduction. In this report, a series of iron porphyrins that vary only in the distal H-bonding network are further investigated and these exhibit turnover frequencies (TOFs) ranging from 1.0 s-1 to 103 s-1. The experimental TOFs correlate with the H-bonding ability of the distal superstructure of these iron porphyrin complexes and analysis suggests that H-bonding alone can tune the rate of CO2 reduction by as much as 1000 fold. DFT calculations provide a detailed insight into how the, apparently weak, 2nd sphere interactions lead to efficient CO2 activation for reduction. The ability to tune CO2 reduction rates by changing the H-bonding residue instead of the acid source is a convenient way to tune CO2 reduction electrocatalysis without compromising selectivity by introducing competitive hydrogen evolution reaction or formate generation.
Original language | English |
---|---|
Pages (from-to) | 5965-5977 |
Number of pages | 13 |
Journal | Dalton Transactions |
Volume | 48 |
Issue number | 18 |
DOIs | |
State | Published - 1 Jan 2019 |
Externally published | Yes |
ASJC Scopus subject areas
- Inorganic Chemistry