TY - JOUR
T1 - Room-Temperature Electrochemical Conversion of Metal–Organic Frameworks into Porous Amorphous Metal Sulfides with Tailored Composition and Hydrogen Evolution Activity
AU - He, Wenhui
AU - Ifraemov, Raya
AU - Raslin, Arik
AU - Hod, Idan
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/5/4
Y1 - 2018/5/4
N2 - The conversion of metal–organic frameworks (MOFs) into inorganic nanomaterials is considered as an attractive means to produce highly efficient electrocatalysts for alternative-energy related applications. Yet, traditionally employed MOF-conversion conditions (e.g., pyrolysis) commonly involve multiple complex high-temperature reaction processes, which often make it challenging to control the composition, pore structure, and active-sites of the MOF-derived catalysts. Herein, a general, simple, room-temperature method is presented for a controlled electrochemical conversion of MOF (EC-MOF) films into porous, amorphous metal sulfides (a-MSx). Detailed X-ray photoelectron spectroscopy analysis and control over independent EC-MOF parameters (e.g., scan-rate and potential window) enable to gain insights on the MOF-conversion mechanisms, and in turn to fine-tune the porosity and composition of the obtained MSx. As a result, a highly active amorphous cobalt sulfide (a-CoSx) electrocatalyst can be designed for hydrogen evolution reaction in neutral pH. Furthermore, the adjustable nature of the EC-MOF method allows to draw conclusions about the correlation between the concentration of catalytically active species (S2-2 sites) and the hydrogen evolution properties of the a-CoSx. Given the method's generality and the diversity of available MOF structures, EC-MOF provides a compelling platform for a rational design of a wide variety of active electrocatalytic materials.
AB - The conversion of metal–organic frameworks (MOFs) into inorganic nanomaterials is considered as an attractive means to produce highly efficient electrocatalysts for alternative-energy related applications. Yet, traditionally employed MOF-conversion conditions (e.g., pyrolysis) commonly involve multiple complex high-temperature reaction processes, which often make it challenging to control the composition, pore structure, and active-sites of the MOF-derived catalysts. Herein, a general, simple, room-temperature method is presented for a controlled electrochemical conversion of MOF (EC-MOF) films into porous, amorphous metal sulfides (a-MSx). Detailed X-ray photoelectron spectroscopy analysis and control over independent EC-MOF parameters (e.g., scan-rate and potential window) enable to gain insights on the MOF-conversion mechanisms, and in turn to fine-tune the porosity and composition of the obtained MSx. As a result, a highly active amorphous cobalt sulfide (a-CoSx) electrocatalyst can be designed for hydrogen evolution reaction in neutral pH. Furthermore, the adjustable nature of the EC-MOF method allows to draw conclusions about the correlation between the concentration of catalytically active species (S2-2 sites) and the hydrogen evolution properties of the a-CoSx. Given the method's generality and the diversity of available MOF structures, EC-MOF provides a compelling platform for a rational design of a wide variety of active electrocatalytic materials.
KW - amorphous cobalt sulfide
KW - electrocatalysis
KW - hierarchically porous structure
KW - hydrogen evolution
KW - metal–organic frameworks
UR - http://www.scopus.com/inward/record.url?scp=85041834860&partnerID=8YFLogxK
U2 - 10.1002/adfm.201707244
DO - 10.1002/adfm.201707244
M3 - Article
AN - SCOPUS:85041834860
SN - 1616-301X
VL - 28
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 18
M1 - 1707244
ER -