Rotated angular modulated electronic and optical properties of bilayer phosphorene: A first-principles study

Weiyang Yu, Shaofei Li, Long Lin, Xiaolin Cai, Liwei Zhang, Xuefeng Yang, Zhanying Zhang, Chun Yao Niu, Hualong Tao, Jingwen Sun, Junwu Zhu

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Bilayer phosphorene homojunctions have attracted considerable interest owing to their natural bandgap and high carrier mobility. However, very little is known about the valuableness in arrays of bilayer phosphorene homojunctions with different rotated angles. In this work, we have presented angular modulated electronic and optical properties of rotated bilayer phosphorene employing first-principles calculations based on density functional theory. The angles in the homojunctions of the rotated bilayer phosphorene are set to be 26.02 °, 71.61 °, 110.54 °, 130.39 °, and149.01 °, respectively, and the homojunctions demonstrate different bandgaps of 0.66 eV, 0.64 eV, 0.63 eV, 0.68 eV, and 0.67 eV, respectively, implying that these homojunctions are good candidates for application in optoelectronics and nanoelectronics. Interestingly, we found that the rotatedbilayer phosphorene can greatly enhance the absorption of visible and infrared light, which would provide encouragement on the modeling of the rotated bilayer phosphorene in nanoelectronic and optoelectronic devices.

Original languageEnglish
Article number163102
JournalApplied Physics Letters
Volume117
Issue number16
DOIs
StatePublished - 19 Oct 2020
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Rotated angular modulated electronic and optical properties of bilayer phosphorene: A first-principles study'. Together they form a unique fingerprint.

Cite this