TY - JOUR
T1 - Rules and reals
AU - Goldstern, Martin
AU - Kojman, Menachem
PY - 1999/1/1
Y1 - 1999/1/1
N2 - A "k-rule" is a sequence A→ = ((An,Bn) : n < ℕ) of pairwise disjoint sets Bn, each of cardinality ≤ k and subsets An ⊆ Bn. A subset X ⊆ ℕ (a "real") follows a rule A→ if for infinitely many n ∈ ℕ, X ∩ Bn = An. Two obvious cardinal invariants arise from this definition: the least number of reals needed to follow all k-rules, sk, and the least number of k-rules with no real that follows all of them, τk. Call A→ a bounded rule if A→ is a k-rule for some k. Let τ∞ be the least cardinality of a set of bounded rules with no real following all rules in the set. We prove the following: τ∞ ≥ max(cov(K),cov(L)) and τ = τ1 ≥ τ2 = τk for all k ≥ 2. However, in the Laver model, τ2 < b = τ1. An application of τ∞ is in Section 3: we show that below τ∞ one can find proper extensions of dense independent families which preserve a pre-assigned group of automorphisms. The original motivation for discovering rules was an attempt to construct a maximal homogeneous family over ω. The consistency of such a family is still open.
AB - A "k-rule" is a sequence A→ = ((An,Bn) : n < ℕ) of pairwise disjoint sets Bn, each of cardinality ≤ k and subsets An ⊆ Bn. A subset X ⊆ ℕ (a "real") follows a rule A→ if for infinitely many n ∈ ℕ, X ∩ Bn = An. Two obvious cardinal invariants arise from this definition: the least number of reals needed to follow all k-rules, sk, and the least number of k-rules with no real that follows all of them, τk. Call A→ a bounded rule if A→ is a k-rule for some k. Let τ∞ be the least cardinality of a set of bounded rules with no real following all rules in the set. We prove the following: τ∞ ≥ max(cov(K),cov(L)) and τ = τ1 ≥ τ2 = τk for all k ≥ 2. However, in the Laver model, τ2 < b = τ1. An application of τ∞ is in Section 3: we show that below τ∞ one can find proper extensions of dense independent families which preserve a pre-assigned group of automorphisms. The original motivation for discovering rules was an attempt to construct a maximal homogeneous family over ω. The consistency of such a family is still open.
KW - Cardinal invariants of the continuum
UR - http://www.scopus.com/inward/record.url?scp=33646829635&partnerID=8YFLogxK
U2 - 10.1090/s0002-9939-99-04635-3
DO - 10.1090/s0002-9939-99-04635-3
M3 - Article
AN - SCOPUS:33646829635
VL - 127
SP - 1517
EP - 1521
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
SN - 0002-9939
IS - 5
ER -