TY - JOUR
T1 - Ryanodine receptor/calcium release channel conformations as reflected in the different effects of propranolol on its ryanodine binding and channel activity
AU - Zchut, Sigalit
AU - Feng, Wei
AU - Shoshan-Barmatz, Varda
PY - 1996/4/15
Y1 - 1996/4/15
N2 - 1. Propranolol, a β-blocker, inhibited or stimulated ryanodine binding to both the membrane-bound and purified ryanodine receptor (RyR) depending on the assay conditions. At high NaCl concentrations, propranolol increased the number of ryanodine-binding sites (B(max)) with no effect on the binding affinity. In the presence of 0.2 M NaCl, ryanodine binding was inhibited by propranolol. Half-maximal inhibition was obtained at 1.2 mM and complete inhibition at 2 mM propranolol. The inhibitory effect of propranolol obtained at low NaCl concentration was not restored by increasing the NaCl concentration to 1 M. 2. Modulators of the RyR that are known to alter its conformational states, such as adenine nucleotides, Ca2+ concentration and pH, modified the effect of propranolol on ryanodine binding. In the presence of propranolol and at low NaCl concentrations, ryanodine binding was inhibited,and showed no Ca2+-, pH- or time-dependence. 3. Propranolol immediately and completely blocked the channel opening of RyR reconstituted into a planar lipid bilayer. Propranolol-modified non-active channel was reactivated to a subconductive state (about 40% of the control conductance) by ATP. 4. Competition experiments between lidocaine (a stimulatory drug) or tetracaine (an inhibitory drug) and propranolol at 0.2 or 1.0 M NaCl, respectively, suggest the existence of different interaction sites for local anaesthetics and propranolol. 5. These results suggest that propranolol interacts directly with the RyR and modifies its ryanodine binding and single-channel activities. Propranolol effects are altered by the RyR conformational state, suggesting its possible use as a conformational probe for RyR.
AB - 1. Propranolol, a β-blocker, inhibited or stimulated ryanodine binding to both the membrane-bound and purified ryanodine receptor (RyR) depending on the assay conditions. At high NaCl concentrations, propranolol increased the number of ryanodine-binding sites (B(max)) with no effect on the binding affinity. In the presence of 0.2 M NaCl, ryanodine binding was inhibited by propranolol. Half-maximal inhibition was obtained at 1.2 mM and complete inhibition at 2 mM propranolol. The inhibitory effect of propranolol obtained at low NaCl concentration was not restored by increasing the NaCl concentration to 1 M. 2. Modulators of the RyR that are known to alter its conformational states, such as adenine nucleotides, Ca2+ concentration and pH, modified the effect of propranolol on ryanodine binding. In the presence of propranolol and at low NaCl concentrations, ryanodine binding was inhibited,and showed no Ca2+-, pH- or time-dependence. 3. Propranolol immediately and completely blocked the channel opening of RyR reconstituted into a planar lipid bilayer. Propranolol-modified non-active channel was reactivated to a subconductive state (about 40% of the control conductance) by ATP. 4. Competition experiments between lidocaine (a stimulatory drug) or tetracaine (an inhibitory drug) and propranolol at 0.2 or 1.0 M NaCl, respectively, suggest the existence of different interaction sites for local anaesthetics and propranolol. 5. These results suggest that propranolol interacts directly with the RyR and modifies its ryanodine binding and single-channel activities. Propranolol effects are altered by the RyR conformational state, suggesting its possible use as a conformational probe for RyR.
UR - http://www.scopus.com/inward/record.url?scp=0029877465&partnerID=8YFLogxK
U2 - 10.1042/bj3150377
DO - 10.1042/bj3150377
M3 - Article
AN - SCOPUS:0029877465
SN - 0264-6021
VL - 315
SP - 377
EP - 383
JO - Biochemical Journal
JF - Biochemical Journal
IS - 2
ER -