Safe partial diagnosis from normal observations

Roni Stern, Brendan Juba

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Model-based diagnosis (MBD) is difficult to use in practice because it requires a model of the diagnosed system, which is often very hard to obtain. We explore theoretically how observing the system when it is in a normal state can provide information about the system that is sufficient to learn a partial system model that allows automated diagnosis. We analyze the number of observations needed to learn a model capable of finding faulty components in most cases. Then, we explore how knowing the system topology can help us to learn a useful model from the normal observations for settings in which many of the internal system variables cannot be observed. Unlike other data-driven methods, our learned model is safe, in the sense that subsystems identified as faulty are guaranteed to truly be faulty.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages3084-3091
Number of pages8
ISBN (Electronic)9781577358091
StatePublished - 1 Jan 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Safe partial diagnosis from normal observations'. Together they form a unique fingerprint.

Cite this