Scalable High-Power Battery Emulator for Power Hardware-in-the-Loop Applications

Bar Halivni, Daniel Beniaminson, Lee Maman, Adi Yankovich, Michael Evzelman, Mor Mordechai Peretz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper introduces a scalable power hardware-in-the-loop (PHiL) battery emulation system. The battery emulator enables the simulation of real battery voltage profiles with full power rating sink and sourcing capabilities using off-the-shelf components. The battery emulator tracks battery voltage, temperature, and current to provide real-time monitoring of the emulated battery's state of charge (SOC) and remaining useful life (RUL). The emulator operates in a continuous battery emulation mode or a cyclic mode for repetitive battery testing. The new battery emulator can replace end-product batteries during system development and is realized in two parts, PC Graphical User Interface (GUI) and battery emulator (Hardware). A battery profile-generating algorithm is introduced to accurately reflect the behavior of an actual battery during emulation. All measured data and battery voltage profiles are transferred via Wi-Fi to enable maximal freedom in system deployment. An experimental prototype has been built and tested to verify the battery emulation operation. The prototype handles a maximum input voltage of 150V and an input current of 60A.

Original languageEnglish
Title of host publication2023 IEEE 24th Workshop on Control and Modeling for Power Electronics, COMPEL 2023
PublisherInstitute of Electrical and Electronics Engineers
ISBN (Electronic)9798350316186
DOIs
StatePublished - 1 Jan 2023
Event24th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2023 - Ann Arbor, United States
Duration: 25 Jun 202328 Jun 2023

Publication series

Name2023 IEEE 24th Workshop on Control and Modeling for Power Electronics, COMPEL 2023

Conference

Conference24th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2023
Country/TerritoryUnited States
CityAnn Arbor
Period25/06/2328/06/23

Keywords

  • Battery Emulator
  • Programable Power Supply
  • Scalable Power

ASJC Scopus subject areas

  • Computer Science Applications
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Scalable High-Power Battery Emulator for Power Hardware-in-the-Loop Applications'. Together they form a unique fingerprint.

Cite this