Scattering by lossy anisotropic scatterers: A modal approach

N. Kossowski, Parry Y. Chen, Q. J. Wang, P. Genevet, Yonatan Sivan

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Scattering from anisotropic geometries of arbitrary shape is relatively difficult to interpret physically, involving the intricate interplay between material and geometric effects. Insights into complex scattering mechanisms are often enabled by modal methods that decompose the response into the well-understood multipolar resonances. Here, we extend the generalized normal mode expansion to lossy and anisotropic scatterers. Unique to the method is that it decomposes the total response of any anisotropic resonator into the modes of the corresponding isotropic resonator. This disentangles the material and geometric contributions to the scattering of any anisotropic resonator. Furthermore, the method can identify absorption and scattering resonances with separate sets of modes. We illustrate our method by considering an infinitely long cylinder with concentric metallic/dielectric layers, targeting the complex case of an effective hyperbolic response. We show that by scanning the material composition of the hyperbolic medium, we can achieve any desired scattering effect, including backscattering cancellation.

Original languageEnglish
Article number113104
JournalJournal of Applied Physics
Volume129
Issue number11
DOIs
StatePublished - 21 Mar 2021

ASJC Scopus subject areas

  • Physics and Astronomy (all)

Fingerprint

Dive into the research topics of 'Scattering by lossy anisotropic scatterers: A modal approach'. Together they form a unique fingerprint.

Cite this