Scavenging of soluble gaseous pollutants by rain droplets in the atmosphere with nocturnal temperature profile

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We analyze non-isothermal absorption of trace gases by the rain droplets with internal circulation which is caused by interfacial shear stresses. It is assumed that the temperature and concentration of soluble trace gases in the atmosphere varies in a vertical direction. The rate of scavenging of soluble trace gases by falling rain droplets is determined by solving heat and mass transfer equations. In the analysis we accounted for the accumulation of the absorbate in the bulk of the falling rain droplet. The problem is solved in the approximation of a thin concentration and temperature boundary layers in the droplet and in the surrounding air. We assumed that the bulk of a droplet, beyond the diffusion boundary layer, is completely mixed and concentration of the absorbate and temperature are homogeneous and time-dependent in the bulk. By combining the generalized similarity transformation method with Duhamel's theorem, the system of transient conjugate equations of convective diffusion and energy conservation for absorbate transport in liquid and gaseous phases with time-dependent boundary conditions is reduced to a system of linear convolution Volterra integral equations of the second kind which is solved numerically. Calculations are performed using available experimental data on nocturnal temperature profiles in the atmosphere. It is shown than if concentration of a trace gas in the atmosphere is homogeneous and temperature in the atmosphere increases with altitude, droplet absorbs gas during all the period of its fall. Neglecting temperature inhomogenity in the atmosphere described by nocturnal temperature inversion leads to essential underestimation of the trace gas concentration in a droplet on the ground.

Original languageEnglish
Title of host publication2010 14th International Heat Transfer Conference, IHTC 14
Pages57-65
Number of pages9
DOIs
StatePublished - 1 Dec 2010
Event2010 14th International Heat Transfer Conference, IHTC 14 - Washington, DC, United States
Duration: 8 Aug 201013 Aug 2010

Publication series

Name2010 14th International Heat Transfer Conference, IHTC 14
Volume8

Conference

Conference2010 14th International Heat Transfer Conference, IHTC 14
Country/TerritoryUnited States
CityWashington, DC
Period8/08/1013/08/10

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Scavenging of soluble gaseous pollutants by rain droplets in the atmosphere with nocturnal temperature profile'. Together they form a unique fingerprint.

Cite this