Abstract
Applying Dirac's procedure to r-dependent constrained systems, we derive a reduced total Hamiltonian, resembling an upside down harmonic oscillator, which generates the Schwarzschild solution in the mini super-spacetime. Associated with the now r-dependent Schrodinger equation is a tower of localized Guth-Pi-Barton wave packets, orthonormal and non-singular, admitting equally spaced average-'energy' levels. Our approach is characterized by a universal quantum mechanical uncertainty structure which enters the game already at the flat spacetime level, and accompanies the massive Schwarzschild sector for any arbitrary mean mass. The average black hole horizon surface area is linearly quantized.
Original language | English |
---|---|
Article number | 1662 |
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | General Relativity and Gravitation |
Volume | 46 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jan 2014 |
Keywords
- Black hole
- Constrained system
- Mini super spacetime
- Schrodinger equation
- Wave packet
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)