TY - GEN
T1 - Screwdriver bit head design - Effect of phillips, straight, and a hybrid design on torque, axial force, and effort ratio
AU - Hickok, Mark D.
AU - Marklin, Richard W.
AU - Nagurka, Mark L.
AU - Simoneau, Guy
N1 - Publisher Copyright:
Copyright 2014 Human Factors and Ergonomics Society.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Advancements in fastener technology have been complemented by the development of new types of screwdriver bits. While designs may vary, so may the force application requirements placed on the tool user. The primary objective of this experiment was to analyze the relationship between user applied torque and screwdriver bit design. A further objective was to utilize the results to develop an effort metric by which bits of different designs can be compared. Three types of screwdriver bit designs (straight, Phillips, and combination of straight/Phillips (ECX™)) were tested to determine how the design affects the amount and type of force applied by the user when performing a fastening task. The designs were tested to simulate fastener tightening and loosening operations. Sixteen participants were tested in this study. The data suggest there is no difference in user torque exertion between the ECX™ bit, Phillips, and the straight bit designs in either direction, 2.61-2.97 Nm for pronation and 2.63-2.85 for supination. Mean axial force was significantly less for the Phillips (67 N) than the other 2 bits (72 and 80N). Although there was no significant effect of bit head design on maximal torque and axial force, the data suggest that the Phillips bit design may allow subjects to exert less axial force, which would result in a higher biomechanical effort ratio. A greater effort ratio would produce greater torque for the same axial force or the same torque for a lower axial force. Mean effort ratio for the Phillips bit was 3.6 N/N (Sup) and 4 N/N (Pro) and approximately 3.0 for the other two combinations of bits and directions. Subjective assessment indicated that users overwhelmingly preferred the Phillips bit design.
AB - Advancements in fastener technology have been complemented by the development of new types of screwdriver bits. While designs may vary, so may the force application requirements placed on the tool user. The primary objective of this experiment was to analyze the relationship between user applied torque and screwdriver bit design. A further objective was to utilize the results to develop an effort metric by which bits of different designs can be compared. Three types of screwdriver bit designs (straight, Phillips, and combination of straight/Phillips (ECX™)) were tested to determine how the design affects the amount and type of force applied by the user when performing a fastening task. The designs were tested to simulate fastener tightening and loosening operations. Sixteen participants were tested in this study. The data suggest there is no difference in user torque exertion between the ECX™ bit, Phillips, and the straight bit designs in either direction, 2.61-2.97 Nm for pronation and 2.63-2.85 for supination. Mean axial force was significantly less for the Phillips (67 N) than the other 2 bits (72 and 80N). Although there was no significant effect of bit head design on maximal torque and axial force, the data suggest that the Phillips bit design may allow subjects to exert less axial force, which would result in a higher biomechanical effort ratio. A greater effort ratio would produce greater torque for the same axial force or the same torque for a lower axial force. Mean effort ratio for the Phillips bit was 3.6 N/N (Sup) and 4 N/N (Pro) and approximately 3.0 for the other two combinations of bits and directions. Subjective assessment indicated that users overwhelmingly preferred the Phillips bit design.
UR - http://www.scopus.com/inward/record.url?scp=84957700050&partnerID=8YFLogxK
U2 - 10.1177/1541931214581329
DO - 10.1177/1541931214581329
M3 - Conference contribution
AN - SCOPUS:84957700050
T3 - Proceedings of the Human Factors and Ergonomics Society
SP - 1580
EP - 1584
BT - 2014 International Annual Meeting of the Human Factors and Ergonomics Society, HFES 2014
PB - Human Factors an Ergonomics Society Inc.
T2 - 58th International Annual Meeting of the Human Factors and Ergonomics Society, HFES 2014
Y2 - 27 October 2014 through 31 October 2014
ER -