TY - GEN
T1 - SDR
T2 - 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
AU - Cohen, Nachshon
AU - Portnoy, Amit
AU - Fetahu, Besnik
AU - Ingber, Amir
N1 - Publisher Copyright:
© 2022 Association for Computational Linguistics.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - BERT based ranking models have achieved superior performance on various information retrieval tasks. However, the large number of parameters and complex self-attention operations come at a significant latency overhead. To remedy this, recent works propose late-interaction architectures, which allow precomputation of intermediate document representations, thus reducing latency. Nonetheless, having solved the immediate latency issue, these methods now introduce storage costs and network fetching latency, which limit their adoption in real-life production systems. In this work, we propose the Succinct Document Representation (SDR) scheme that computes highly compressed intermediate document representations, mitigating the storage/network issue. Our approach first reduces the dimension of token representations by encoding them using a novel autoencoder architecture that uses the document's textual content in both the encoding and decoding phases. After this token encoding step, we further reduce the size of the document representations using modern quantization techniques. Evaluation on MSMARCO's passage re-reranking task show that compared to existing approaches using compressed document representations, our method is highly efficient, achieving 4x-11.6x higher compression rates for the same ranking quality. Similarly, on the TREC CAR dataset, we achieve 7.7x higher compression rate for the same ranking quality.
AB - BERT based ranking models have achieved superior performance on various information retrieval tasks. However, the large number of parameters and complex self-attention operations come at a significant latency overhead. To remedy this, recent works propose late-interaction architectures, which allow precomputation of intermediate document representations, thus reducing latency. Nonetheless, having solved the immediate latency issue, these methods now introduce storage costs and network fetching latency, which limit their adoption in real-life production systems. In this work, we propose the Succinct Document Representation (SDR) scheme that computes highly compressed intermediate document representations, mitigating the storage/network issue. Our approach first reduces the dimension of token representations by encoding them using a novel autoencoder architecture that uses the document's textual content in both the encoding and decoding phases. After this token encoding step, we further reduce the size of the document representations using modern quantization techniques. Evaluation on MSMARCO's passage re-reranking task show that compared to existing approaches using compressed document representations, our method is highly efficient, achieving 4x-11.6x higher compression rates for the same ranking quality. Similarly, on the TREC CAR dataset, we achieve 7.7x higher compression rate for the same ranking quality.
UR - http://www.scopus.com/inward/record.url?scp=85141577678&partnerID=8YFLogxK
U2 - 10.18653/v1/2022.acl-long.457
DO - 10.18653/v1/2022.acl-long.457
M3 - Conference contribution
AN - SCOPUS:85141577678
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 6624
EP - 6637
BT - ACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
A2 - Muresan, Smaranda
A2 - Nakov, Preslav
A2 - Villavicencio, Aline
PB - Association for Computational Linguistics (ACL)
Y2 - 22 May 2022 through 27 May 2022
ER -