Self-Assembled Nanostructures Regulate H2S Release from Constitutionally Isomeric Peptides

Yin Wang, Kuljeet Kaur, Samantha J. Scannelli, Ronit Bitton, John B. Matson

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

We report here on three constitutionally isomeric peptides, each of which contains two glutamic acid residues and two lysine residues functionalized with S-aroylthiooximes (SATOs), termed peptide-H2S donor conjugates (PHDCs). SATOs decompose in the presence of cysteine to generate hydrogen sulfide (H2S), a biological signaling gas with therapeutic potential. The PHDCs self-assemble in aqueous solution into different morphologies, two into nanoribbons of different dimensions and one into a rigid nanocoil. The rate of H2S release from the PHDCs depends on the morphology, with the nanocoil-forming PHDC exhibiting a complex release profile driven by morphological changes promoted by SATO decomposition. The nanocoil-forming PHDC mitigated the cardiotoxicity of doxorubicin more effectively than its nanoribbon-forming constitutional isomers as well as common H2S donors. This strategy opens up new avenues to develop H2S-releasing biomaterials and highlights the interplay between structure and function from the molecular level to the nanoscale.

Original languageEnglish
Pages (from-to)14945-14951
Number of pages7
JournalJournal of the American Chemical Society
Volume140
Issue number44
DOIs
StatePublished - 7 Nov 2018

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Self-Assembled Nanostructures Regulate H2S Release from Constitutionally Isomeric Peptides'. Together they form a unique fingerprint.

Cite this