Self-binding energies in AdS

Stefano Andriolo, Marco Michel, Eran Palti

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The Positive Binding Conjecture is a proposed formulation of the Weak Gravity Conjecture appropriate to Anti de-Sitter (AdS) space. It proposes that in a consistent gravitational theory, with a U(1) gauge symmetry, there must exist a charged particle with non-negative self-binding energy. In order to formulate this as a constraint on a given effective theory, we calculate the self-binding energy for a charged particle in AdS4 and AdS5. In particular, we allow it to couple to an additional scalar field of arbitrary mass. Unlike the flat-space case, even when the scalar field is massive it contributes significantly to the binding energy, and therefore is an essential component of the conjecture. In AdS5, we give analytic expressions for the self-binding energy for the cases when the scalar field is massless and when it saturates the Breitenlohner-Freedman (BF) bound, and in AdS4 when it is massless. We show that the massless case reproduces the flat-space expressions in the large AdS radius limit, and that both analytic cases lead to vanishing total self-binding energy for BPS particles in example supersymmetric models. For other masses of the scalar we give numerical expressions for its contribution to the self-binding energy.

Original languageEnglish
Article number78
JournalJournal of High Energy Physics
Volume2023
Issue number2
DOIs
StatePublished - 1 Feb 2023

Keywords

  • Effective Field Theories
  • String and Brane Phenomenology
  • Supergravity Models

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Self-binding energies in AdS'. Together they form a unique fingerprint.

Cite this