## Abstract

We consider the standard semi-direct product A × B of finite groups A, B. We show that with certain choices of generators for these three groups, the Cayley graph of A × B is (essentially) the zigzag product of the Cayley graphs of A and B. Thus, using the results of [RVW00], the new Cayley graph is an expander if and only if its two components are. We develop some general ways of using this construction to obtain large constant-degree expanding Cayley graphs from small ones. In [LW93], Lubotzky and Weiss asked whether expansion is a group property; namely, is being expander for (a Cayley graph of) a group G depend solely on G and not on the choice of generators. We use the above construction to answer the question in negative, by showing an infinite family of groups A_{i} × B_{i} which are expanders with one choice of (constant-size) set of generators and are not with another such choice. It is interesting to note that this problem is still open, though, for "natural" families of groups, like the symmetric groups S_{n} or the simple groups PSL(2, p).

Original language | English |
---|---|

Pages (from-to) | 630-637 |

Number of pages | 8 |

Journal | Annual Symposium on Foundations of Computer Science - Proceedings |

DOIs | |

State | Published - 1 Jan 2001 |

Externally published | Yes |

## ASJC Scopus subject areas

- Hardware and Architecture