Sensing and communication trade-offs in picosatellite formation flying missions

Shlomi Arnon, Debbie Kedar

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

One of the primary challenges in all small satellite design is the attainment of adequate sensing and communication capabilities within the stringent spatial limitations. These can be defined in terms of surface area expenditure for the different payloads. There is an inevitable trade-off between enhancing the sensing capacity at the expense of reducing communication capabilities on the one hand and, on the other hand, increasing the communication capacity to the detriment of the sensing ability. Careful balancing of the conflicting demands is necessary to achieve acceptable performance levels. In this paper we study two intersatellite optical wireless communication scenarios: (i) a direct link between two satellites and (ii) a folded path link between a master satellite and a picosatellite equipped with a modulatable retroreflector. In the latter case the picosatellite does not have a laser transmitter and the data carrier is the retroreflected beam from the master satellite. The data rate, which is bounded by the sensing payload resolution, is derived using diffraction theory and Shannon capacity considerations. We develop a mathematical model to describe the interrelations between sensing and communication facilities in a picosatellite flight formation using optical technologies and demonstrate system performance trade-offs with a numerical example.

Original languageEnglish
Pages (from-to)2128-2133
Number of pages6
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume26
Issue number10
DOIs
StatePublished - 1 Oct 2009

Fingerprint

Dive into the research topics of 'Sensing and communication trade-offs in picosatellite formation flying missions'. Together they form a unique fingerprint.

Cite this