Sensitive development windows of prenatal air pollution and cognitive functioning in preschool age Mexican children

Hsiao Hsien Leon Hsu, Jamil M. Lane, Lourdes Schnaas, Brent A. Coull, Erika Osorio-Valencia, Yueh Hsiu Mathilda Chiu, Ander Wilson, Allan C. Just, Itai Kloog, David Bellinger, Martha M. Téllez-Rojo, Robert O. Wright

Research output: Contribution to journalArticlepeer-review


Introduction: Neurotoxicity resulting from air pollution is of increasing concern. Considering exposure timing effects on neurodevelopmental impairments may be as important as the exposure dose. We used distributed lag regression to determine the sensitive windows of prenatal exposure to fine particulate matter (PM2.5) on children's cognition in a birth cohort in Mexico. Methods: Analysis included 553 full-term (≥37 weeks gestation) children. Prenatal daily PM2.5 exposure was estimated using a validated satellite-based spatiotemporal model. McCarthy Scales of Children's Abilities (MSCA) were used to assess children's cognitive function at 4-5 years old (lower scores indicate poorer performance). To identify susceptibility windows, we used Bayesian distributed lag interaction models to examine associations between prenatal PM2.5 levels and MSCA. This allowed us to estimate vulnerable windows while testing for effect modification. Results: After adjusting for maternal age, socioeconomic status, child age, and sex, Bayesian distributed lag interaction models showed significant associations between increased PM2.5 levels and decreased general cognitive index scores at 31-35 gestation weeks, decreased quantitative scale scores at 30-36 weeks, decreased motor scale scores at 30-36 weeks, and decreased verbal scale scores at 37-38 weeks. Estimated cumulative effects (CE) of PM2.5 across pregnancy showed significant associations with general cognitive index (CÊ = -0.35, 95% confidence interval [CI] = -0.68, -0.01), quantitative scale (CÊ = -0.27, 95% CI = -0.74, -0.02), motor scale (CÊ = -0.25, 95% CI = -0.44, -0.05), and verbal scale (CÊ = -0.2, 95% CI = -0.43, -0.02). No significant sex interactions were observed. Conclusions: Prenatal exposure to PM2.5, particularly late pregnancy, was inversely associated with subscales of MSCA. Using data-driven methods to identify sensitive window may provide insight into the mechanisms of neurodevelopmental impairment due to pollution.

Original languageEnglish
Pages (from-to)E291
JournalEnvironmental Epidemiology
Issue number1
StatePublished - 9 Feb 2024


  • Air pollution
  • Neurodevelopment
  • Particulate matter
  • Prenatal exposure
  • Sensitive windows

ASJC Scopus subject areas

  • Epidemiology
  • Global and Planetary Change
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Sensitive development windows of prenatal air pollution and cognitive functioning in preschool age Mexican children'. Together they form a unique fingerprint.

Cite this