## Abstract

We introduce a new class of commutative noetherian DG-rings which generalizes the class of regular local rings. These are defined to be local DG-rings (A,m¯) such that the maximal ideal m¯⊆H^{0}(A) can be generated by an A-regular sequence. We call these DG-rings sequence-regular DG-rings, and make a detailed study of them. Using methods of Cohen-Macaulay differential graded algebra, we prove that the Auslander-Buchsbaum-Serre theorem about localization generalizes to this setting. This allows us to define global sequence-regular DG-rings, and to introduce this regularity condition to derived algebraic geometry. It is shown that these DG-rings share many properties of classical regular local rings, and in particular we are able to construct canonical residue DG-fields in this context. Finally, we show that sequence-regular DG-rings are ubiquitous, and in particular, any eventually coconnective derived algebraic variety over a perfect field is generically sequence-regular.

Original language | English |
---|---|

Pages (from-to) | 400-435 |

Number of pages | 36 |

Journal | Journal of Algebra |

Volume | 647 |

DOIs | |

State | Published - 1 Jun 2024 |

Externally published | Yes |

## Keywords

- Cohen-Macaulay DG-ring
- Commutative DG-ring
- Regular local ring

## ASJC Scopus subject areas

- Algebra and Number Theory