TY - GEN
T1 - Sequencing educational content in classrooms using Bayesian knowledge tracing
AU - David, Yossi Ben
AU - Segal, Avi
AU - Gal, Ya'akov
N1 - Publisher Copyright:
© 2016 ACM.
PY - 2016/4/25
Y1 - 2016/4/25
N2 - Despite the prevalence of e-learning systems in schools, most of today's systems do not personalize educational data to the individual needs of each student. This paper proposes a new algorithm for sequencing questions to students that is empir- ically shown to lead to better performance and engagement in real schools when compared to a baseline approach. It is based on using knowledge tracing to model students' skill acquisition over time, and to select questions that advance the student's learning within the range of the student's ca- pabilities, as determined by the model. The algorithm is based on a Bayesian Knowledge Tracing (BKT) model that incorporates partial credit scores, reasoning about multiple attempts to solve problems, and integrating item dificulty. This model is shown to outperform other BKT models that do not reason about (or reason about some but not all) of these features. The model was incorporated into a sequenc- ing algorithm and deployed in two classes in different schools where it was compared to a baseline sequencing algorithm that was designed by pedagogical experts. In both classes, students using the BKT sequencing approach solved more dificult questions and attributed higher performance than did students who used the expert-based approach. Students were also more engaged using the BKT approach, as deter- mined by their interaction time and number of log-ins to the system, as well as their reported opinion. We expect our approach to inform the design of better methods for se- quencing and personalizing educational content to students that will meet their individual learning needs.
AB - Despite the prevalence of e-learning systems in schools, most of today's systems do not personalize educational data to the individual needs of each student. This paper proposes a new algorithm for sequencing questions to students that is empir- ically shown to lead to better performance and engagement in real schools when compared to a baseline approach. It is based on using knowledge tracing to model students' skill acquisition over time, and to select questions that advance the student's learning within the range of the student's ca- pabilities, as determined by the model. The algorithm is based on a Bayesian Knowledge Tracing (BKT) model that incorporates partial credit scores, reasoning about multiple attempts to solve problems, and integrating item dificulty. This model is shown to outperform other BKT models that do not reason about (or reason about some but not all) of these features. The model was incorporated into a sequenc- ing algorithm and deployed in two classes in different schools where it was compared to a baseline sequencing algorithm that was designed by pedagogical experts. In both classes, students using the BKT sequencing approach solved more dificult questions and attributed higher performance than did students who used the expert-based approach. Students were also more engaged using the BKT approach, as deter- mined by their interaction time and number of log-ins to the system, as well as their reported opinion. We expect our approach to inform the design of better methods for se- quencing and personalizing educational content to students that will meet their individual learning needs.
UR - http://www.scopus.com/inward/record.url?scp=84976462792&partnerID=8YFLogxK
U2 - 10.1145/1235
DO - 10.1145/1235
M3 - Conference contribution
AN - SCOPUS:84976462792
T3 - ACM International Conference Proceeding Series
SP - 354
EP - 363
BT - LAK 2016 Conference Proceedings, 6th International Learning Analytics and Knowledge Conference - Enhancing Impact
PB - Association for Computing Machinery
T2 - 6th International Conference on Learning Analytics and Knowledge, LAK 2016
Y2 - 25 April 2016 through 29 April 2016
ER -