TY - GEN
T1 - Sequential Plan Recognition
AU - Mirsky, Reuth
AU - Gal, Ya'akov
AU - Stern, Roni
AU - Kalech, Meir
N1 - Publisher Copyright:
Copyright © 2016, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Plan recognition algorithms need to maintain all candidate hypotheses which are consistent with the observations, even though there is only a single hypothesis that is the correct one. Unfortunately, the number of possible hypotheses can be exponentially large in practice. This paper addresses the problem of how to disambiguate between many possible hypotheses that are all consistent with the actions of the observed agent. One way to reduce the number of hypotheses is to consult a domain expert or the acting agent directly about its intentions. This process can be performed sequentially, updating the set of hypotheses during the recognition process. The paper specifically addresses the problem of how to minimize the number of queries made that are required to find the correct hypothesis. It adapts a number of probing techniques for choosing which plan to query, such as maximal information gain and maximum likelihood. These approaches were evaluated on a domain from the literature using a well known plan recognition algorithm. The results showed that the information gain approach was able to find the correct plan using significantly fewer queries than the maximum likelihood approach as well as a baseline approach choosing random plans. Our technique can inform the design of future plan recognition systems that interleave the recognition process with intelligent interventions of their users.
AB - Plan recognition algorithms need to maintain all candidate hypotheses which are consistent with the observations, even though there is only a single hypothesis that is the correct one. Unfortunately, the number of possible hypotheses can be exponentially large in practice. This paper addresses the problem of how to disambiguate between many possible hypotheses that are all consistent with the actions of the observed agent. One way to reduce the number of hypotheses is to consult a domain expert or the acting agent directly about its intentions. This process can be performed sequentially, updating the set of hypotheses during the recognition process. The paper specifically addresses the problem of how to minimize the number of queries made that are required to find the correct hypothesis. It adapts a number of probing techniques for choosing which plan to query, such as maximal information gain and maximum likelihood. These approaches were evaluated on a domain from the literature using a well known plan recognition algorithm. The results showed that the information gain approach was able to find the correct plan using significantly fewer queries than the maximum likelihood approach as well as a baseline approach choosing random plans. Our technique can inform the design of future plan recognition systems that interleave the recognition process with intelligent interventions of their users.
KW - Activity Recognition
KW - Human-Aware AI
KW - Plan recognition
UR - http://www.scopus.com/inward/record.url?scp=85014249517&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85014249517
T3 - Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
SP - 1347
EP - 1348
BT - Proceedings of the 2016 International Conference on Autonomous Agents and Multiagent Systems
PB - International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
T2 - 15th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2016
Y2 - 9 May 2016 through 13 May 2016
ER -