@inproceedings{0e3399fa3e844656aba2888f28db094b,
title = "ShapGraph: An Holistic View of Explanations through Provenance Graphs and Shapley Values",
abstract = "Explaining query results is an essential tool for enhancing the transparency and quality of data processing, and has been extensively studied in recent years. In particular, Data Provenance-the tracking of transformations that data undergoes in query evaluation-has been shown to be a key component of explanations. A hurdle that remains is that data provenance itself is often too large and complex to be presented in its entirety. To that end, we propose to leverage novel advancements on quantifying and computing the contributions of individual input tuples to query answers, based on the game-theoretic notion of the Shapley value. Our proposed prototype solution, called ShapGraph, combines the global view of explanations through provenance graphs with a local quantification of contributions through Shapley values. The graphical interface allows users to switch between and combine these two views to obtain a deeper understanding of the most influential parts of the database and how they interact to yield query answers.",
keywords = "Shapley value, data provenance",
author = "Susan Davidson and Daniel Deutch and Nave Frost and Benny Kimelfeld and Omer Koren and Mika{\"e}l Monet",
note = "Publisher Copyright: {\textcopyright} 2022 ACM.; 2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022 ; Conference date: 12-06-2022 Through 17-06-2022",
year = "2022",
month = jun,
day = "10",
doi = "10.1145/3514221.3520172",
language = "English",
series = "Proceedings of the ACM SIGMOD International Conference on Management of Data",
publisher = "Association for Computing Machinery",
pages = "2373--2376",
booktitle = "SIGMOD 2022 - Proceedings of the 2022 International Conference on Management of Data",
}