Shock response of boron carbide based composites infiltrated with magnesium

M. Kafri, M. Dariel, N. Frage, E. Zaretsky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The fully dense composites were obtained by vacuum infiltrating boron carbide compacts (80% green density) with molten AZ91 magnesium alloy (850°C) and with the melt of a 50/50 AZ91- silicon mixture (1050°C). The densities composites were, 2.44 g/cm 3 and 2.54 g/cm 3, respectively. The impact response of the composites was studied in a series of VISAR -instrumented planar impact experiments with velocities of W and Cu impactors ranging from 100 to 1000 m/s. The velocity history recorded for the composites produced by infiltration with the Mg-Si alloy contains a distinct elastic precursor front followed by a plastic ramp. In contrast, the velocity history of the composite infiltrated with AZ91 does not display any step-like front; the amplitude of the elastic wave grows gradually from zero level and transforms smoothly into the plastic front. The influence of the composites microstructure on their compressive and tensile behavior is discussed.

Original languageEnglish
Title of host publicationShock Compression of Condensed Matter - 2011 - Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
Pages1343-1346
Number of pages4
DOIs
StatePublished - 13 Jun 2012
Event17th Biennial Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2011 APS SCCM - Chicago, IL, United States
Duration: 26 Jun 20111 Jul 2011

Publication series

NameAIP Conference Proceedings
Volume1426
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference17th Biennial Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2011 APS SCCM
Country/TerritoryUnited States
CityChicago, IL
Period26/06/111/07/11

Keywords

  • Boron carbide
  • composite
  • fracture
  • magnesium
  • strength

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Shock response of boron carbide based composites infiltrated with magnesium'. Together they form a unique fingerprint.

Cite this