Short-chain reactive probes as tools to unravel the Pseudomonas aeruginosaquorum sensing regulon

Alex Yashkin, Josep Rayo, Larson Grimm, Martin Welch, Michael M. Meijler

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In recent years, the world has seen a troubling increase in antibiotic resistance among bacterial pathogens. In order to provide alternative strategies to combat bacterial infections, it is crucial deepen our understanding into the mechanisms that pathogens use to thrive in complex environments. Most bacteria use sophisticated chemical communication systems to sense their population density and coordinate gene expression in a collective manner, a process that is termed “quorum sensing” (QS). The human pathogen Pseudomonas aeruginosauses several small molecules to regulate QS, and one of them is N-butyryl-l-homoserine lactone (C4-HSL). Using an activity-based protein profiling (ABPP) strategy, we designed biomimetic probes with a photoreactive group and a ‘click’ tag as an analytical handle. Using these probes, we have identified previously uncharacterized proteins that are part of the P. aeruginosa QS network, and we uncovered an additional role for this natural autoinducer in the virulence regulon of P. aeruginosa, through its interaction with PhzB1/2 that results in inhibition of pyocyanin production.

Original languageEnglish
Pages (from-to)4570-4581
Number of pages12
JournalChemical Science
Volume12
Issue number12
DOIs
StatePublished - 28 Mar 2021

ASJC Scopus subject areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Short-chain reactive probes as tools to unravel the Pseudomonas aeruginosaquorum sensing regulon'. Together they form a unique fingerprint.

Cite this