Abstract
The shot noise in the current through a quantum dot is calculated as a function of voltage from the high-voltage Coulomb-blockaded regime to the low-voltage Kondo regime. Using several complementary approaches, it is shown that the zero-frequency shot noise (scaled by the voltage) exhibits a nonmonotonic dependence on voltage, with a peak around the Kondo temperature. Beyond giving a good estimate of the Kondo temperature, it is shown that the shot noise yields additional information on the effects of electronic correlations on the local density of states in the Kondo regime, unaccessible in traditional transport measurements.
Original language | English |
---|---|
Pages (from-to) | 4 |
Number of pages | 1 |
Journal | Physical Review Letters |
Volume | 88 |
Issue number | 11 |
DOIs | |
State | Published - 1 Jan 2002 |
ASJC Scopus subject areas
- General Physics and Astronomy