Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

Hadar Ben-Yoav, Tal Amzel, Marek Sternheim, Shimshon Belkin, Adi Rubin, Yosi Shacham-Diamand, Amihay Freeman

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively short 10 ms external DC electric pulse improves the performance of bacterial biosensors by 15% relative to un-biased biosensors. The application of prolonged 1 h external alternating electric fields deteriorated the whole-cell performance in the presence of toxins. In this paper we present the electrode apparatus and methods, as well as the characterization results, e.g. signal vs. time and induction factor, of such chips and discussing the highlight and problems of this new concept.

Original languageEnglish
Pages (from-to)9666-9672
Number of pages7
JournalElectrochimica Acta
Volume56
Issue number26
DOIs
StatePublished - 1 Nov 2011
Externally publishedYes

Keywords

  • Biochip
  • Electric fields
  • Electrophoretic deposition
  • Electroporation
  • Whole-cell biosensor

Fingerprint

Dive into the research topics of 'Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields'. Together they form a unique fingerprint.

Cite this