Signal power distribution in time delay in Tokyo City experimental sites

M. Hayakawa, D. Katz, N. Blaunstein

    Research output: Contribution to journalArticlepeer-review

    3 Scopus citations

    Abstract

    This paper presents experiments carried out in the city of Tokyo in two types of builtup environments. One environment is characterized by a straight-crossing street plan with buildings randomly lining the streets and the terminal antennas located at the line of sight (LOS) and quasi-LOS conditions along the streets. The second built-up area is characterized by straight-crossing streets with non-LOS (NLOS) conditions caused by the railway station and administrative buildings surrounding the terminal antennas. The time delay signal strength distributions obtained experimentally are presented for both multipath urban channels These test experiments are used to study whether any propagation modeling can predict the time delay distribution of signal power. Our theoretical framework is based on the corresponding crossing-street waveguide model taking into account the Poisson statistics for buildings randomly lining each street. The proposed analytical formulas are analyzed for different parameters of the built-up terrain, such as the street width, the average height of buildings, the terminal antenna heights with respect to the rooftops of buildings lining a street, and the gaps (slits) between the buildings. Then a comparison between the proposed theoretical model and experimental data is presented, which indicates a satisfactory agreement between the theoretical and experimental prediction of signal power distribution in the time delay domain. So, our modeling can be used as a promising predictor for the time delay distribution in the microcellular propagation environment.

    Original languageEnglish
    Article numberRS3006
    JournalRadio Science
    Volume43
    Issue number3
    DOIs
    StatePublished - 1 Dec 2008

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • General Earth and Planetary Sciences
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'Signal power distribution in time delay in Tokyo City experimental sites'. Together they form a unique fingerprint.

    Cite this