TY - GEN
T1 - Simple Proofs of Space-Time and Rational Proofs of Storage
AU - Moran, Tal
AU - Orlov, Ilan
N1 - Publisher Copyright:
© 2019, International Association for Cryptologic Research.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - We introduce a new cryptographic primitive: Proofs of Space-Time (PoSTs) and construct an extremely simple, practical protocol for implementing these proofs. A PoST allows a prover to convince a verifier that she spent a “space-time” resource (storing data—space—over a period of time). Formally, we define the PoST resource as a trade-off between CPU work and space-time (under reasonable cost assumptions, a rational user will prefer to use the lower-cost space-time resource over CPU work). Compared to a proof-of-work, a PoST requires less energy use, as the “difficulty” can be increased by extending the time period over which data is stored without increasing computation costs. Our definition is very similar to “Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the previous definitions, takes into account amortization attacks and storage duration. Moreover, our protocol uses a very different (and much simpler) technique, making use of the fact that we explicitly allow a space-time tradeoff, and doesn’t require any non-standard assumptions (beyond random oracles). Unlike previous constructions, our protocol allows incremental difficulty adjustment, which can gracefully handle increases in the price of storage compared to CPU work. In addition, we show how, in a crypto-currency context, the parameters of the scheme can be adjusted using a market-based mechanism, similar in spirit to the difficulty adjustment for PoW protocols.
AB - We introduce a new cryptographic primitive: Proofs of Space-Time (PoSTs) and construct an extremely simple, practical protocol for implementing these proofs. A PoST allows a prover to convince a verifier that she spent a “space-time” resource (storing data—space—over a period of time). Formally, we define the PoST resource as a trade-off between CPU work and space-time (under reasonable cost assumptions, a rational user will prefer to use the lower-cost space-time resource over CPU work). Compared to a proof-of-work, a PoST requires less energy use, as the “difficulty” can be increased by extending the time period over which data is stored without increasing computation costs. Our definition is very similar to “Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the previous definitions, takes into account amortization attacks and storage duration. Moreover, our protocol uses a very different (and much simpler) technique, making use of the fact that we explicitly allow a space-time tradeoff, and doesn’t require any non-standard assumptions (beyond random oracles). Unlike previous constructions, our protocol allows incremental difficulty adjustment, which can gracefully handle increases in the price of storage compared to CPU work. In addition, we show how, in a crypto-currency context, the parameters of the scheme can be adjusted using a market-based mechanism, similar in spirit to the difficulty adjustment for PoW protocols.
UR - http://www.scopus.com/inward/record.url?scp=85071740093&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-26948-7_14
DO - 10.1007/978-3-030-26948-7_14
M3 - Conference contribution
AN - SCOPUS:85071740093
SN - 9783030269470
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 381
EP - 409
BT - Advances in Cryptology – CRYPTO 2019 - 39th Annual International Cryptology Conference, Proceedings
A2 - Micciancio, Daniele
A2 - Boldyreva, Alexandra
PB - Springer Verlag
T2 - 39th Annual International Cryptology Conference, CRYPTO 2019
Y2 - 18 August 2019 through 22 August 2019
ER -