Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage

Denny Milakara, Cristian Grozea, Markus Dahlem, Sebastian Major, Maren K.L. Winkler, Janos Lückl, Michael Scheel, Vasilis Kola, Karl Schoknecht, Svetlana Lublinsky, Alon Friedman, Peter Martus, Jed A. Hartings, Johannes Woitzik, Jens P. Dreier

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

In many cerebral grey matter structures including the neocortex, spreading depolarization (SD) is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH) and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID) recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury.

Original languageEnglish
Pages (from-to)524-538
Number of pages15
JournalNeuroImage: Clinical
Volume16
DOIs
StatePublished - 1 Jan 2017

Keywords

  • Cytotoxic edema
  • Ischemia
  • Spreading depression
  • Stroke
  • Subarachnoid hemorrhage
  • Traumatic brain injury

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage'. Together they form a unique fingerprint.

Cite this