Abstract
Respiratory infections are the major cause of death from infectious disease worldwide. Multiplexed diagnostic approaches are essential as many respiratory viruses have indistinguishable symptoms. We created self-assembled DNA nanobait that can simultaneously identify multiple short RNA targets. The nanobait approach relies on specific target selection via toehold-mediated strand displacement and rapid readout via nanopore sensing. Here we show that this platform can concurrently identify several common respiratory viruses, detecting a panel of short targets of viral nucleic acids from multiple viruses. Our nanobait can be easily reprogrammed to discriminate viral variants with single-nucleotide resolution, as we demonstrated for several key SARS-CoV-2 variants. Last, we show that the nanobait discriminates between samples extracted from oropharyngeal swabs from negative- and positive-SARS-CoV-2 patients without preamplification. Our system allows for the multiplexed identification of native RNA molecules, providing a new scalable approach for the diagnostics of multiple respiratory viruses in a single assay.
Original language | English |
---|---|
Pages (from-to) | 290-298 |
Number of pages | 9 |
Journal | Nature Nanotechnology |
Volume | 18 |
Issue number | 3 |
DOIs | |
State | Published - 1 Mar 2023 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering
- General Materials Science
- Condensed Matter Physics
- Electrical and Electronic Engineering