Single-element simulations of partial-drainage effects under monotonic and cyclic loading

R. Kamai, R. W. Boulanger

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Liquefaction-induced seepage and pore-water pressure redistribution can locally change a sands' void ratio, such that in-situ strength and deformation behavior following an earthquake depend on the coupled diffusion process and not only on pre-earthquake soil properties. The effects of partial drainage on the monotonic, cyclic, and post-cyclic behavior of liquefied sand are explored at the element scale in this study, using the constitutive model PM4Sand [1] and the finite-difference code FLAC [2]. The ability of a critical state-based constitutive model to approximate partially drained loading responses is evaluated by comparing single-element simulations to available lab data and trends. The calibrated model is then used to examine the potential effects of partial drainage on the cyclic stress-strain behavior and accumulation of shear strains for dense-of-critical sand. The importance of liquefaction-induced seepage and void redistribution to the in-situ strength and deformation behavior of liquefied sands is discussed in view of the results of these partially drained laboratory element tests and simulations.

Original languageEnglish
Pages (from-to)29-40
Number of pages12
JournalSoil Dynamics and Earthquake Engineering
Volume35
DOIs
StatePublished - 1 Apr 2012
Externally publishedYes

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Geotechnical Engineering and Engineering Geology
  • Soil Science

Fingerprint

Dive into the research topics of 'Single-element simulations of partial-drainage effects under monotonic and cyclic loading'. Together they form a unique fingerprint.

Cite this