Single-Error Detection and Correction for Duplication and Substitution Channels

Yuanyuan Tang, Yonatan Yehezkeally, Moshe Schwartz, Farzad Farnoud Hassanzadeh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Motivated by mutation processes occurring in in-vivo DNA-storage applications, a channel that mutates stored strings by duplicating substrings as well as substituting symbols is studied. Two models of such a channel are considered: one in which the substitutions occur only within the duplicated substrings, and one in which the location of substitutions is unrestricted. Both error-detecting and error-correcting codes are constructed, which can handle correctly any number of tandem duplications of a fixed length k, and at most a single substitution occurring at any time during the mutation process.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages300-304
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - 1 Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/07/1912/07/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Single-Error Detection and Correction for Duplication and Substitution Channels'. Together they form a unique fingerprint.

Cite this