Sleep-quality assessment from full night audio recordings of sleep apnea patients

E. Dafna, Ariel Tarasiuk, Yaniv Zigel

Research output: Contribution to conferencePaperpeer-review

16 Scopus citations

Abstract

In this work, a novel system (method) for sleep quality analysis is proposed. Its purpose is to assist an alternative non-contact method for detecting and diagnosing sleep related disorders based on acoustic signal processing. In this work, audio signals of 145 patients with obstructive sleep apnea were recorded (more than 1000 hours) in a sleep laboratory and analyzed. The method is based on the assumption that during sleep the respiratory efforts are more periodically patterned and consistent relative to a waking state; furthermore, the sound intensity of those efforts is higher, making the pattern more noticeable relative to the background noise level. The system was trained on 50 subjects and validated on 95 subjects. The system accuracy for detecting sleep/wake state is 82.1% (epoch by epoch), resulting in 3.9% error (difference) in detecting sleep latency, 11.4% error in estimating total sleep time, and 11.4% error in estimating sleep efficiency.

Original languageEnglish GB
Pages3660-3663
Number of pages4
DOIs
StatePublished - 14 Dec 2012
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: 28 Aug 20121 Sep 2012

Conference

Conference34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Country/TerritoryUnited States
CitySan Diego, CA
Period28/08/121/09/12

Keywords

  • Audio Signal Processing
  • Obstructive Sleep Apnea
  • Sleep Quality Estimation
  • Snore Detection

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Sleep-quality assessment from full night audio recordings of sleep apnea patients'. Together they form a unique fingerprint.

Cite this