Sliding window temporal graph coloring

George B. Mertzios, Hendrik Molter, Viktor Zamaraev

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

Graph coloring is one of the most famous computational problems with applications in a wide range of areas such as planning and scheduling, resource allocation, and pattern matching. So far coloring problems are mostly studied on static graphs, which often stand in stark contrast to practice where data is inherently dynamic and subject to discrete changes over time. A temporal graph is a graph whose edges are assigned a set of integer time labels, indicating at which discrete time steps the edge is active. In this paper we present a natural temporal extension of the classical graph coloring problem. Given a temporal graph and a natural number ?, we ask for a coloring sequence for each vertex such that (i) in every sliding time window of ? consecutive time steps, in which an edge is active, this edge is properly colored (i.e. its endpoints are assigned two different colors) at least once during that time window, and (ii) the total number of different colors is minimized. This sliding window temporal coloring problem abstractly captures many realistic graph coloring scenarios in which the underlying network changes over time, such as dynamically assigning communication channels to moving agents. We present a thorough investigation of the computational complexity of this temporal coloring problem. More specifically, we prove strong computational hardness results, complemented by efficient exact and approximation algorithms. Some of our algorithms are linear-time fixed-parameter tractable with respect to appropriate parameters, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH).

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages7667-7674
Number of pages8
ISBN (Electronic)9781577358091
StatePublished - 1 Jan 2019
Externally publishedYes
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Sliding window temporal graph coloring'. Together they form a unique fingerprint.

Cite this