Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting

Arik Dahan, Gordon L. Amidon

Research output: Contribution to journalArticlepeer-review

107 Scopus citations

Abstract

Sulfasalazine is characterized by low intestinal absorption, which essentially enables its colonic targeting and therapeutic action. The mechanisms behind this low absorption have not yet been elucidated. The purpose of this study was to investigate the role of efflux transporters in the intestinal absorption of sulfasalazine as a potential mechanism for its low small-intestinal absorption and colonic targeting following oral administration. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on sulfasalazine bidirectional permeability were studied across Caco-2 cell monolayers, including dose-response analysis. Sulfasalazine in vivo permeability was then investigated in the rat jejunum by single-pass perfusion, in the presence vs. absence of inhibitors. Sulfasalazine exhibited 19-fold higher basolateral-to-apical (BL-AP) than apical-to-basolateral (AP-BL) Caco-2 permeability, indicative of net mucosal secretion. MRP2 inhibitors (MK-571 and indomethacin) and BCRP inhibitors [fumitremorgin C (FTC) and pantoprazole] significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport in a concentration-dependent manner. No effect was observed with the P-gp inhibitors verapamil and quinidine. The IC50 values of the specific MRP2 and BCRP inhibitors MK-571 and FTC on sulfasalazine secretion were 21.5 and 2.0 μM, respectively. Simultaneous inhibition of MRP2 and BCRP completely abolished sulfasalazine Caco-2 efflux. Without inhibitors, sulfasalazine displayed low (vs. metoprolol) in vivo intestinal permeability in the rat model. MK-571 or FTC significantly increased sulfasalazine permeability, bringing it to the low-high permeability boundary. With both MK-571 and FTC present, sulfasalazine displayed high permeability. In conclusion, efflux transport mediated by MRP2 and BCRP, but not P-gp, shifts sulfasalazine permeability from high to low, thereby enabling its colonic targeting and therapeutic action. To our knowledge, this is the first demonstration of intestinal efflux acting in favor of oral drug delivery.

Original languageEnglish
Pages (from-to)G371-G377
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume297
Issue number2
DOIs
StatePublished - 1 Aug 2009
Externally publishedYes

Keywords

  • Efflux transporters
  • Intestinal absorption
  • Passive/active gastrointestinal wall transport

ASJC Scopus subject areas

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting'. Together they form a unique fingerprint.

Cite this