Socially motivated partial cooperation in multi-agent local search

Tal Ze'evi, Roie Zivan, Omer Lev

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Partial Cooperation is a paradigm and a corresponding model, proposed to represent multi-agent systems in which agents are willing to cooperate to achieve a global goal, as long as some minimal threshold on their personal utility is satisfied. Distributed local search algorithms were proposed in order to solve asymmetric distributed constraint optimization problems (ADCOPs) in which agents are partially cooperative. We contribute by: 1) extending the partial cooperative model to allow it to represent dynamic cooperation intentions, affected by changes in agents' wealth, in accordance with social studies literature. 2) proposing a novel local search algorithm in which agents receive indications of others' preferences on their actions and thus, can perform actions that are socially beneficial. Our empirical study reveals the advantage of the proposed algorithm in multiple benchmarks. Specifically, on realistic meeting scheduling problems it overcomes limitations of standard local search algorithms.

Original languageEnglish
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages583-589
Number of pages7
ISBN (Electronic)9780999241127
DOIs
StatePublished - 1 Jan 2018
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: 13 Jul 201819 Jul 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Conference

Conference27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Country/TerritorySweden
CityStockholm
Period13/07/1819/07/18

Fingerprint

Dive into the research topics of 'Socially motivated partial cooperation in multi-agent local search'. Together they form a unique fingerprint.

Cite this