Some finite-dimensional backward-shift-invariant subspaces in the ball and a related interpolation problem

Daniel Alpay, H. Turgay Kaptanoǧlu

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

We solve Gleason's problem in the reproducing kernel Hilbert space with reproducing kernel 1/(1- ∑1N zjw*j). We define and study some finite-dimensional resolvent-invariant subspaces that generalize the finite-dimensional de Branges-Rovnyak spaces to the setting of the ball.

Original languageEnglish
Pages (from-to)1-21
Number of pages21
JournalIntegral Equations and Operator Theory
Volume42
Issue number1
DOIs
StatePublished - 3 Dec 2002

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'Some finite-dimensional backward-shift-invariant subspaces in the ball and a related interpolation problem'. Together they form a unique fingerprint.

Cite this