Abstract
“Liquid” and “plasticized” solvent membranes are of interest as possible analogues of biological systems. Semipermeable homogeneous films are prepared by plasticizing polyvinylchloride with organic phosphates. Water permeability of such films is relatively high. For a material containing 70% of 1.4-dihydroxyphenyl-bis(dibutylphosphate), the diffusion coefficient of water at room temperature was estimated to be about 1 × 10-6 cm2/sec. Conditioning of a plasticized membrane, under the osmotic gradient of solution of sodium nitrate, leads to profound changes in its morphology and to a drastic increase of its water permeability. The induced changes are reversible to a large extent. Their reversibility in various solutions may be correlated with the respective differences in permselectivity. The structure of expanded membranes and the mechanism of changes taking place under the osmotic gradients are discussed.
Original language | English |
---|---|
Pages (from-to) | 901-910 |
Number of pages | 10 |
Journal | Biophysical Journal |
Volume | 10 |
Issue number | 9 |
DOIs | |
State | Published - 1 Jan 1970 |
ASJC Scopus subject areas
- Biophysics