Some finite-dimensional backward shift-invariant subspaces in the ball and a related factorization problem

Daniel Alpay, H. Turgay Kaptanoǧlu

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Beurling's theorem characterizes subspaces of the Hardy space invariant under the forward-shift operator in terms of inner functions. In this Note we consider the case where the ball replaces the open unit disk and the reproducing kernel Hilbert space with reproducing kernel 1/(1 - ∑N1 zjw*j) replaces the Hardy space. We give explicit formulas which generalize Blaschke products in the case of spaces finite codimension.

Original languageEnglish
Pages (from-to)947-952
Number of pages6
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume331
Issue number12
DOIs
StatePublished - 15 Dec 2000

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Some finite-dimensional backward shift-invariant subspaces in the ball and a related factorization problem'. Together they form a unique fingerprint.

Cite this