Space quasiconformal mappings and Neumann eigenvalues in fractal type domains

Vladimir Gol'Dshtein, Ritva Hurri-Syrjänen, Alexander Ukhlov

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We study the variation of Neumann eigenvalues of the p-Laplace operator under quasiconformal perturbations of space domains. This study allows us to obtain the lower estimates of Neumann eigenvalues in fractal type domains. The proposed approach is based on the geometric theory of composition operators in connection with the quasiconformal mapping theory.

Original languageEnglish
Pages (from-to)221-233
Number of pages13
JournalGeorgian Mathematical Journal
Volume25
Issue number2
DOIs
StatePublished - 1 Jun 2018

Keywords

  • Neumann eigenvalues
  • Sobolev spaces
  • quasiconformal mappings

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Space quasiconformal mappings and Neumann eigenvalues in fractal type domains'. Together they form a unique fingerprint.

Cite this