Abstract
Spatial distributions of the gain and temperature across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit-nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter, and gas pumping rate. The mixing efficiency for supersonic injection of iodine (∼0.85) is much larger than for transonic injection (∼0.5), the maximum values of the gain being ∼0.65%/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection, the optimal value of nI2 at the flow centerline is smaller than that at off axis locations. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decrease the Mach number results in a much larger mixing efficiency (∼0.8) than for a closed leak.
Original language | English |
---|---|
Pages (from-to) | 1398-1405 |
Number of pages | 8 |
Journal | IEEE Journal of Quantum Electronics |
Volume | 38 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2002 |
Keywords
- Chemical lasers
- Iodine
- Oxygen
- Power lasers
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering