Spatiotemporal dynamics of ice streams due to a triple-valued sliding law

Roiy Sayag, Eli Tziperman

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

We show that a triple-valued sliding law can be heuristically motivated by the transverse spatial structure of an ice-stream velocity field using a simple one-dimensional model. We then demonstrate that such a sliding law can lead to some interesting stream-like patterns and time-oscillatory solutions. We find a generation of rapid stream-like solutions within a slow ice-sheet flow, separated by narrow internal boundary layers (shear margins), and analyse numerical simulations in two horizontal dimensions over a homogeneous bed and including longitudinal shear stresses. Different qualitative behaviours are obtained by changing a single physical parameter, a mass source magnitude, leading to changes from a slow creeping flow to a relaxation oscillation of the stream pattern, and to steady ice-stream-like solution. We show that the adjustment of the ice-flow shear margins to changes in the driving stress in the one-dimensional approximation is governed by a form of the GinzburgLandau equation and use stability analysis to understand this adjustment. In the model analysed here, the width scale of the stream is not set spontaneously by the ice flow dynamics, but rather, it is related to the mass source intensity and spatial distribution.

Original languageEnglish
Pages (from-to)483-505
Number of pages23
JournalJournal of Fluid Mechanics
Volume640
DOIs
StatePublished - 1 Jan 2009
Externally publishedYes

Keywords

  • Ice sheets
  • Instability
  • Low-Reynolds-number flows

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Spatiotemporal dynamics of ice streams due to a triple-valued sliding law'. Together they form a unique fingerprint.

Cite this