TY - JOUR
T1 - Specific lipoplex-mediated antisense against Bcl-2 in breast cancer cells
T2 - A comparison between different formulations
AU - Meidan, Victor M.
AU - Glezer, Judith
AU - Salomon, Sharona
AU - Sidi, Yechezkel
AU - Barenholz, Yechezkel
AU - Cohen, Jack S.
AU - Lilling, Gila
PY - 2006/2/1
Y1 - 2006/2/1
N2 - G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a canonic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3β[N-(N′,N′-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms - either large unilamellar vesicles (∼100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.
AB - G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a canonic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3β[N-(N′,N′-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms - either large unilamellar vesicles (∼100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.
KW - Antisense oligonucleotide
KW - Ceramide carbamoyl spermine (CCS)
KW - DC-Chol
KW - DOTAP
KW - G3139
UR - http://www.scopus.com/inward/record.url?scp=33645343551&partnerID=8YFLogxK
U2 - 10.1080/08982100500528685
DO - 10.1080/08982100500528685
M3 - Article
C2 - 16556548
AN - SCOPUS:33645343551
SN - 0898-2104
VL - 16
SP - 27
EP - 43
JO - Journal of Liposome Research
JF - Journal of Liposome Research
IS - 1
ER -