Spectrum of high-frequency acoustic noise in inviscid liquid-linear approximation for spherical waves

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The high-frequency asymptotics of the acoustic noise spectrum is considered for the case of spherically symmetric waves propagating in an unbounded inviscid liquid. Using the Kirkwood and Bethe hypothesis regarding kinetic enthalpy, the Euler equations, the equation of state in the Tait’s form and following linearization allow the kinetic enthalpy and “reduced” pressure to be obtained. The Fourier transform yields the spectral density of acoustic energy which proves to be inversely proportional to the square frequency and decreases approximately by 6 decibels per octave with increase of a frequency.

Original languageEnglish
Pages (from-to)249-251
Number of pages3
JournalJournal of Vibration and Acoustics, Transactions of the ASME
Volume125
Issue number3
DOIs
StatePublished - 1 Jan 2003

ASJC Scopus subject areas

  • Acoustics and Ultrasonics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Spectrum of high-frequency acoustic noise in inviscid liquid-linear approximation for spherical waves'. Together they form a unique fingerprint.

Cite this