Stability of peatland carbon to rising temperatures

R. M. Wilson, A. M. Hopple, M. M. Tfaily, S. D. Sebestyen, C. W. Schadt, L. Pfeifer-Meister, C. Medvedeff, K. J. Mcfarlane, J. E. Kostka, M. Kolton, R. K. Kolka, L. A. Kluber, J. K. Keller, T. P. Guilderson, N. A. Griffiths, J. P. Chanton, S. D. Bridgham, P. J. Hanson

Research output: Contribution to journalArticlepeer-review

161 Scopus citations

Abstract

Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top20-30 cm of peat from experimental plots have higher CH4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH4 and CO2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. There are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. These results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.

Original languageEnglish
Article number13723
JournalNature Communications
Volume7
DOIs
StatePublished - 13 Dec 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Stability of peatland carbon to rising temperatures'. Together they form a unique fingerprint.

Cite this