Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain

Fabrizio Lombardi, Selver Pepić, Oren Shriki, Gašper Tkačik, Daniele De Martino

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Neurons in the brain are wired into adaptive networks that exhibit collective dynamics as diverse as scale-specific oscillations and scale-free neuronal avalanches. Although existing models account for oscillations and avalanches separately, they typically do not explain both phenomena, are too complex to analyze analytically or intractable to infer from data rigorously. Here we propose a feedback-driven Ising-like class of neural networks that captures avalanches and oscillations simultaneously and quantitatively. In the simplest yet fully microscopic model version, we can analytically compute the phase diagram and make direct contact with human brain resting-state activity recordings via tractable inference of the model’s two essential parameters. The inferred model quantitatively captures the dynamics over a broad range of scales, from single sensor oscillations to collective behaviors of extreme events and neuronal avalanches. Importantly, the inferred parameters indicate that the co-existence of scale-specific (oscillations) and scale-free (avalanches) dynamics occurs close to a non-equilibrium critical point at the onset of self-sustained oscillations.

Original languageEnglish
Pages (from-to)254-263
Number of pages10
JournalNature Computational Science
Volume3
Issue number3
DOIs
StatePublished - 1 Mar 2023

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Computer Science Applications
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain'. Together they form a unique fingerprint.

Cite this