Strategies for full structure solution of intermetallic compounds using precession electron diffraction zonal data

Shmuel Samuha, Yaakov Krimer, Louisa Meshi

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Owing to the individuality of intermetallic compounds, they are regarded as a special class of materials. As such, there is a need to develop a step-by-step methodology for solution of their structure. The current paper adapts the methodology of structure solution from precession electron diffraction (PED) zonal data for intermetallics. The optimization of PED parameters for structure determination was achieved through the development of the atomic model of a well known Mg17Al12 (β) intermetallic phase. It was concluded that the PED acquisition parameters, the number of unique reflections and the quality of the merging process are the most important parameters that directly influence the correctness of a structure solution. The proposed methodology was applied to the structure solution of a highly complex new Mg48Al36Ag16 phase, which was recently revealed in the Mg-Al-Ag system. The final atomic model consisted of 152 atoms in the unit cell, distributed over 23 unique atomic positions. The correctness of the atomic model was verified by the reasonability of the interatomic distances and coordination polyhedra formed. It was found that the experimental model of Φ-Al17.1Mg53.4Zn29.5 can be assigned as a structure type for the Mg48Al 36Ag16 phase. The Δ value, which measures the similarity between two structures, was calculated as 0.040.

Original languageEnglish
Pages (from-to)1032-1041
Number of pages10
JournalJournal of Applied Crystallography
Volume47
Issue number3
DOIs
StatePublished - 1 Jan 2014

Keywords

  • intermetallics
  • precession electron diffraction zonal data
  • structure solution

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Strategies for full structure solution of intermetallic compounds using precession electron diffraction zonal data'. Together they form a unique fingerprint.

Cite this