Structural basis for allosteric modulation of M. tuberculosis proteasome core particle

Madison Turner, Adwaith B. Uday, Algirdas Velyvis, Enrico Rennella, Natalie Zeytuni, Siavash Vahidi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The Mycobacterium tuberculosis (Mtb) proteasome system selectively degrades damaged or misfolded proteins and is crucial for the pathogen’s survival within the host. Targeting the 20S core particle (CP) offers a viable strategy for developing tuberculosis treatments. The activity of Mtb 20S CP, like that of its eukaryotic counterpart, is allosterically regulated, yet the specific conformations involved have not been captured in high-resolution structures to date. Here, we use single-particle electron cryomicroscopy and H/D exchange mass spectrometry to determine the Mtb 20S CP structure in an auto-inhibited state that is distinguished from the canonical resting state by the conformation of switch helices at the α/β interface. The rearrangement of these helices collapses the S1 pocket, effectively inhibiting substrate binding. Biochemical experiments show that the Mtb 20S CP activity can be altered through allosteric sites far from the active site. Our findings underscore the potential of targeting allostery to develop antituberculosis therapeutics.

Original languageEnglish
Article number3138
JournalNature Communications
Volume16
Issue number1
DOIs
StatePublished - 1 Dec 2025
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Structural basis for allosteric modulation of M. tuberculosis proteasome core particle'. Together they form a unique fingerprint.

Cite this