Structural parameterizations with modulator oblivion

Ashwin Jacob, Fahad Panolan, Venkatesh Raman, Vibha Sahlot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

It is known that problems like Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal are polynomial time solvable in the class of chordal graphs. We consider these problems in a graph that has at most k vertices whose deletion results in a chordal graph, when parameterized by k. While this investigation fits naturally into the recent trend of what are called “structural parameterizations”, here we assume that the deletion set is not given. One method to solve them is to compute a k-sized or an approximate (f(k) sized, for a function f) chordal vertex deletion set and then use the structural properties of the graph to design an algorithm. This method leads to at least kO(k)nO(1) running time when we use the known parameterized or approximation algorithms for finding a k-sized chordal deletion set on an n vertex graph. In this work, we design 2O(k)nO(1) time algorithms for these problems. Our algorithms do not compute a chordal vertex deletion set (or even an approximate solution). Instead, we construct a tree decomposition of the given graph in time 2O(k)nO(1) where each bag is a union of four cliques and O(k) vertices. We then apply standard dynamic programming algorithms over this special tree decomposition. This special tree decomposition can be of independent interest. Our algorithms are, what are sometimes called permissive in the sense that given an integer k, they detect whether the graph has no chordal vertex deletion set of size at most k or output the special tree decomposition and solve the problem. We also show lower bounds for the problems we deal with under the Strong Exponential Time Hypothesis (SETH).

Original languageEnglish
Title of host publication15th International Symposium on Parameterized and Exact Computation, IPEC 2020
EditorsYixin Cao, Marcin Pilipczuk
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Pages19:1--19:18
ISBN (Electronic)9783959771726
DOIs
StatePublished - 4 Dec 2020
Externally publishedYes
Event15th International Symposium on Parameterized and Exact Computation, IPEC 2020 - Virtual, Hong Kong, China
Duration: 14 Dec 202018 Dec 2020

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume180
ISSN (Print)1868-8969

Conference

Conference15th International Symposium on Parameterized and Exact Computation, IPEC 2020
Country/TerritoryChina
CityVirtual, Hong Kong
Period14/12/2018/12/20

Keywords

  • Chordal Graph
  • Parameterized Complexity
  • Strong Exponential Time Hypothesis
  • Tree Decomposition

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Structural parameterizations with modulator oblivion'. Together they form a unique fingerprint.

Cite this