Study of the vortex chamber and its application for the development of novel measurement and control devices

Inna Levitsky

Research output: Contribution to journalArticlepeer-review

Abstract

Based on studies of the flow structure in a short cylindrical vortex chamber, the dependence of the flow rate coefficient on its geometric parameters is proposed. It is shown that the liquid flow form in the chamber's axial vortex the pressure on which surface is corresponds to the pressure of the outflow cavity. These results are used to measure pressure in high-temperature cavities, using a sleeve with a diameter equal to or slightly larger than the diameter of the axial vortex. The sleeve is installed in the vortex chamber, and connects the pressure on its surface to the pressure sensor. The possibility of using a vortex chamber as a damper of pressure fluctuations has been substantiated. The design of the vortex damper and its tests results are presented; these show the possibility of increasing the stabilization time of the outlet pressure more than three-fold. Variants of regulating devices with a vortex chamber, functioning without changing the flow cross-sections, are proposed and the results of their tests are presented. This is achieved either by introducing an obstacle into the chamber cavity or by displacing the axis of the outlet nozzle position.

Original languageEnglish
Pages (from-to)351-362
Number of pages12
JournalInternational Journal of Turbo and Jet Engines
Volume40
Issue number3
DOIs
StatePublished - 1 Aug 2023
Externally publishedYes

Keywords

  • axial vortex
  • flow rate coefficient
  • pressure stabilizer
  • vortex chamber
  • vortex throttle

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Study of the vortex chamber and its application for the development of novel measurement and control devices'. Together they form a unique fingerprint.

Cite this