TY - GEN
T1 - Sublinear random access generators for preferential attachment graphs
AU - Even, Guy
AU - Levi, Reut
AU - Medina, Moti
AU - Rosén, Adi
N1 - Publisher Copyright:
© Guy Even, Reut Levi, Moti Medina, and Adi Rosén;.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - We consider the problem of sampling from a distribution on graphs, specifically when the distribution is defined by an evolving graph model, and consider the time, space and randomness complexities of such samplers. In the standard approach, the whole graph is chosen randomly according to the randomized evolving process, stored in full, and then queries on the sampled graph are answered by simply accessing the stored graph. This may require prohibitive amounts of time, space and random bits, especially when only a small number of queries are actually issued. Instead, we propose to generate the graph on-the-fly, in response to queries, and therefore to require amounts of time, space, and random bits which are a function of the actual number of queries. We focus on two random graph models: the Barabási-Albert Preferential Attachment model (BA-graphs) [3] and the random recursive tree model [24]. We give on-the-fly generation algorithms for both models. With probability 1 - 1/poly(n), each and every query is answered in polylog(n) time, and the increase in space and the number of random bits consumed by any single query are both polylog(n), where n denotes the number of vertices in the graph. Our results show that, although the BA random graph model is defined by a sequential process, efficient random access to the graph's nodes is possible. In addition to the conceptual contribution, efficient on-the-fly generation of random graphs can serve as a tool for the efficient simulation of sublinear algorithms over large BA-graphs, and the efficient estimation of their performance on such graphs.
AB - We consider the problem of sampling from a distribution on graphs, specifically when the distribution is defined by an evolving graph model, and consider the time, space and randomness complexities of such samplers. In the standard approach, the whole graph is chosen randomly according to the randomized evolving process, stored in full, and then queries on the sampled graph are answered by simply accessing the stored graph. This may require prohibitive amounts of time, space and random bits, especially when only a small number of queries are actually issued. Instead, we propose to generate the graph on-the-fly, in response to queries, and therefore to require amounts of time, space, and random bits which are a function of the actual number of queries. We focus on two random graph models: the Barabási-Albert Preferential Attachment model (BA-graphs) [3] and the random recursive tree model [24]. We give on-the-fly generation algorithms for both models. With probability 1 - 1/poly(n), each and every query is answered in polylog(n) time, and the increase in space and the number of random bits consumed by any single query are both polylog(n), where n denotes the number of vertices in the graph. Our results show that, although the BA random graph model is defined by a sequential process, efficient random access to the graph's nodes is possible. In addition to the conceptual contribution, efficient on-the-fly generation of random graphs can serve as a tool for the efficient simulation of sublinear algorithms over large BA-graphs, and the efficient estimation of their performance on such graphs.
KW - Local computation algorithms
KW - Preferential attachment graphs
KW - Random recursive trees
KW - Sublinear algorithms
UR - http://www.scopus.com/inward/record.url?scp=85027259296&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2017.6
DO - 10.4230/LIPIcs.ICALP.2017.6
M3 - Conference contribution
AN - SCOPUS:85027259296
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
A2 - Muscholl, Anca
A2 - Indyk, Piotr
A2 - Kuhn, Fabian
A2 - Chatzigiannakis, Ioannis
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
Y2 - 10 July 2017 through 14 July 2017
ER -